ICRA2024

ΥΟΚΟΗΑΜΑ | ЈΑΡΑΝ **Robotic Inspection and Subsurface Defect Mapping using** Impact-Echo and Ground Penetration Radar

Overview

- Introduce two robots for concrete infrastructure inspection: \bullet
 - GPR Rover, for ground penetration radar automated data collection. \bullet
 - Impact Rover V2, for impact-echo automated data collection. •
 - Sensor fusion between IMU and Camera data for localization.
 - Feedback control and coverage path planning module. •
- GPR naïve back projection and migration for subsurface mapping.
- Learning-based Impact-Echo subsurface defect mapping.

- A mechanical impact is generated in the surface, causing the impact
- P-wave is reflected from boundary conditions.
- The reflected wave is of most importance for impact-echo.
- The time of flight is directly related to the geometry of the structure. It can represent either the depth of the concrete slab, or a defect.

hickness

Dr. Jinglun Feng^{1,3} **Diar Sanakov**⁴ Ejup Hoxha^{1,2} Dr. Jizhong Xiao¹

> ¹The City College of New York ²Amazon, Inc. ³Honda Research Institute USA, Inc. ⁴New York University

GPR Back Projection

 $A_q^k = \{a_t | t = 1, ..., n_q\}$ the q-th A-scan measurement in k-th B-scan data *t*: traveling time $B_k = \{A_q^k | q = 1, ..., n_k\}$: the k-th B-scan consisting of n_k A-scans n_q : the total samples in a A-scan measurement

Impact Echo Principle

- wave to propagate in the concrete structure.

Impact Echo Data Preprocessing

ES-EKF Based Visual-Inertial Fusion

Prediction Step (IMU)

1. Propagate nominal and error state: $\left[p_{k+1} = p_k + v_k \cdot \Delta t + \frac{1}{2}\Delta t^2 \cdot \left(R(a_m - a_b) + g\right)\right]$ $v_{k+1} = v_k + \Delta t \cdot (R(a_m - a_b) + g)$

Correction Step (Camera Update)

- 1. Calculate Kalman gain:
- $K_{k+1} = \hat{\Sigma}_{k+1} H_{k+1}^{T} (H_{k+1} \hat{\Sigma}_{k+1} H_{k+1}^{T} + R_{k+1})^{-1}$

Dataset1

- With labels.
- Split for training / validation / testing.
- Dataset2
- Without labels, ground truth schematics only.
- Used for qualitative validation only.
- **Preprocessing:**
- 1 Shorten to 1.72ms
- 2 LPF (cutoff=25kHZ).
- 3 Upsample to 500kHz.

Results: Impact Echo and GPR

Impact Echo Results

COMPARISON BETWEEN DIFFERENT MODELS IMPLEMENTED ON THIS PAPER

Model	Acc. %	Defect Acc.%	Solid Acc.%	DS2 Map
BL-1DCNN	88.65	70.0	95.0	Fail
BL-BiLSTM	80.03	61.0	87.0	Fail
1DCNN	82.93	75.0	85.64	Fail
Dp-1DCNN	84.13	84.38	84.04	Weak
BiLSTM	85.71	60.93	94.15	Weak
CRNN	88.09	68.75	94.68	Good
IENet1024	87.69	60.93	96.08	Fail
IENet	90.48	75.0	95.74	Best

Quantitative results are generated using test data from DS1. "DS2 MAP" column states how well model identifies defects on DS2, shown in fig. 9. Bl means baseline model

2. Propagate covariance:

 $\hat{\Sigma}_{k+1} = F \cdot \Sigma_k \cdot F^T + G \cdot Q \cdot G^T$

2. Update state and covariance and Inject error state:

 $\delta x_{k+1} = K_{k+1} (Z_{k+1} - H_{k+1} \hat{x}_{k+1})$ $x_{k+1} = \hat{x}_{k+1} + \delta x_{k+1}$

 $\Sigma_{k+1} = \hat{\Sigma}_{k+1} - K_{k+1} H_{k+1} \hat{\Sigma}_{k+1}$

4. Restart error state ($\delta x = 0$)

Desired and executed trajectory

Forward direction [

GPR Results

Feedback Control for Trajectory Execution

Proposed IENet Model for Impact Echo

Conv1D BatchNorm ReLU Conv1D BatchNorm

Layer	Layer Configurations	
Input	IE Signal	(860×1)
residual_block_1	(kernel=1x200, filters=8, stride=1)	$(860 \times 1 \times 8)$
activation_1	ReLU	$(860 \times 1 \times 8)$
maxpool1d_1	(pool_size=2, stride=2)	$(430 \times 1 \times 8)$
residual_block_2	(kernel=1x100, filters=16, stride=1)	$(430 \times 1 \times 16)$
activation_2	ReLU	$(430 \times 1 \times 16)$
maxpool1d_2	(pool_size=2, stride=2)	$(215 \times 1 \times 16)$
residual_block_3	(kernel=1x50, filters=16, stride=1)	$(215 \times 1 \times 16)$
activation_3	ReLU	$(215 \times 1 \times 16)$
maxpool1d_3	(pool_size=2, stride=2)	$(107 \times 1 \times 16)$
residual_block_4	(kernel=1x25, filters=32, stride=1)	$(107 \times 1 \times 32)$
activation_4	ReLU	$(107 \times 1 \times 32)$
maxpool1d_4	(pool_size=2, stride=2)	$(53 \times 1 \times 32)$
residual_block_5	(kernel=1x13, filters=64, stride=1)	$(53 \times 1 \times 64)$
activation_5	ReLU	$(53 \times 1 \times 64)$
maxpool1d_5	(pool_size=2, stride=2)	$(26 \times 1 \times 64)$
residual_block_6	(kernel=1x7, filters=64, stride=1)	$(26 \times 1 \times 64)$
activation_6	ReLU	$(26 \times 1 \times 64)$
maxpool1d_6	(pool_size=2, stride=2)	$(13 \times 1 \times 64)$
reshape_1	$(13 \cdot 64 \times 1)$	(832×1)
bilstm_1	BiLSTM(units=32)	(64×1)
bilstm_2	BiLSTM(units=32)	(64×1)
bilstm_3	BiLSTM(units=32)	(64×1)

Slices of GPR BP results for different depths

Warped Defect Maps Over Dataset2 Ground Truth

Decoupled velocity control for each wheel.

Platform position control

IENET MODEL STRUCTURE

ICRA2024