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Robotic Inspection and Subsurface Defect Mapping
Using Impact-Echo and Ground Penetrating Radar

Ejup Hoxha , Jinglun Feng , Diar Sanakov, and Jizhong Xiao , Senior Member, IEEE

Abstract—Concrete infrastructure often develops a variety of in-
ternal flaws that cannot be detected through visual inspection alone,
and must be regularly inspected with other methods to maintain
structural integrity. It has been demonstrated through previous
studies that relying solely on a single non-destructive evaluation
(NDE) method can be insufficient in providing a comprehensive
evaluation of the structure’s condition. In addition, manual NDE
data collection can be labor-intensive for on-site engineers. This
paper presents a robotic inspection system that uses vision-based
positioning and tags NDE measurement with pose information
to reveal and map subsurface defects. The system consists of
three modules: 1) an Omni-directional robotic data collection plat-
form equipped with a Realsense D435i camera for localization, an
impact-echo (IE) sensor, and a ground penetrating radar (GPR), to
perform automatic NDE data collection; 2) an IE data processing
module that utilizes both learning-based and classical methods to
interpret the IE data and reveal subsurface objects; 3) a GPR data
processing module to reconstruct underground targets and create
a 3D map for better visualization. Field testing demonstrates that
the robotic system significantly increases the data collection speed,
and the correlation of findings from both IE and GPR sensors give
a comprehensive evaluation of concrete structures that will benefit
the inspection and maintenance industry of civil infrastructure.

Index Terms—Robotics and automation in construction, sensor-
based control, sensor fusion.

I. INTRODUCTION

NUMEROUS human-made infrastructures (bridges, tun-
nels, highways, etc.) in USA and around the world are

reaching their life expectancy, and thus have strong needs for
routine inspection and maintenance to ensure sustainability. In
addition to visual inspection of surface flaws (e.g., cracks),
inspectors need to detect subsurface defects (e.g., voids) using
NDE instruments such as GPR and IE devices to determine the
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structural integrity of concrete structures. The current practice
of manual inspection requires human inspectors to first mark
a grid map covering the area of interest, then push the GPR
device along the grid lines and rely on the survey wheel en-
coder to trigger the GPR reading for post-processing, or tap
the IE device at the intersection point of the grid to collect
IE data. It is a time consuming and tedious work surveying a
large area. In this paper, we introduce a robotic solution for
automatic data collection and effective data analysis methods to
interpret NDE data for mapping the subsurface defects. Robotic
inspection offers the advantage of producing more consistent and
cost-effective inspection results through the use of intelligent
algorithms compared to manual inspection. Numerous efforts
have been made to develop robotic systems for construction
inspection [1], which has gained popularity in recent decades.
Texas A&M University [2], [3] proposed a vision-facilitated
underground pipeline mapping method to conduct GPR-based
3D reconstruction using a ground mobile robot.

There are several NDE techniques that can be used to assess
the condition of concrete structures, including impact-echo [4],
impact-sounding [5], ground penetrating radar [6], [7], ultra-
sonic [8], and visual inspection [9]. In this research, we focus
on IE and GPR methods, which are particularly useful for
identifying subsurface defects and deterioration areas, as well
as changes in material properties in concrete structures.

IE is a technique originated from the pioneer works [4],
[10], [11], [12] that utilizes vibrations to assess the condition
of concrete structures. In recent years, many researchers started
using neural network based machine learning methods for IE
data analysis [13], [14], [15]. GPR is widely used in NDE
industry for civil engineers to locate and map buried objects,
measure pavement thickness and properties, and characterize
subsurface features [16], [17]. Back-projection (BP) is the most
commonly used algorithm for GPR imaging and subsurface
reconstruction [18], [19].

There are several challenges to be resolved. First, previous
learning-based IE methods do not generalize well when us-
ing different vibration sensors during inference. Second, the
majority of prior research only use individual NDE technique
for infrastructure inspection, and the single modal analysis
may restrict data-driven decision making. The third challenge
is how to determine the position and orientation of the NDE
sensors accurately and in real-time, and synchronize with NDE
measurements at each sampling step. In the current practice of
NDE data collection, inspectors would either manually move the
sensors along pre-marked grid lines or count on a high-precision
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Fig. 1. System Overview: The robotic inspection system consists of three
modules: a vision-based positioning and automatic NDE data collection module;
an IE data processing module that generates defect maps; and a GPR data
processing module that interprets the GPR data to identify subsurface objects.

global positioning system (GPS) to provide accurate position
information for ground surveying in an outdoor environment.

To address these challenges, we implement a low-cost vision-
based positioning method, tag the pose information on each
IE/GPR sample, and develop data analysis method for IE and
GPR sensors that provides a holistic solution for automated NDE
data collection and subsurface defect detection and mapping.

The system overview is shown in Fig. 1, and the main contri-
butions of this work are summarized as follows:
� An Omni-directional robot holding IE device and GPR

antenna on its chassis that can move forward, backward,
and sideways for fast NDE data collection.

� A multimodal sensing and NDE data analysis strategy that
employs Deep Neural Networks (DNN) to interpret IE
data and correlate with GPR imaging to detect and map
subsurface flaws.

� A publicly accessible dataset for collected IE and GPR
data over a concrete slab containing detailed ground truth
information.

II. AUTOMATE NDE DATA COLLECTION VIA GROUND ROBOTS

A. Robotic Data Collection System

In this section, we introduce our robotic inspection system that
facilitate and automate the NDE data collection. Fig. 2 shows
a rendered model of the robot that uses Mecanum wheels [20]
to generate a holonomic system, making the robot easy to move
sideways and survey the ground along grid patterns while main-
taining its orientation. By preserving a constant orientation, the
robot enhances the resilience of the visual SLAM. A front-facing
Realsense RGB-D camera with embedded IMU is utilized for
vision-based positioning and localization. A sliding mechanism
is installed at the rear of the robot that host IE device assembly
in the sliding plate. The dome in Fig. 2 is used to amplify
impact-sounding (IS) signals and insulate ambient noise. The IS

Fig. 2. Omni-directional robot for automatic IE data collection.

Fig. 3. Omni-directional robot for automatic GPR data collection, where a
GPR antenna is installed at the bottom of the robot chassis.

acoustic signal is collected by a microphone which is installed
at the focal point of the dome to detect shallow defects. An
electric solenoid is installed at the center of the dome to tap the
ground. Next to the dome, an up-and-down damping mechanism
is installed to host a piezoelectric (PZT) sensor for collecting
vibration signal when the PZT sensor is in contact with ground
surface. The damping mechanism uses a ball-screw shaft to
move the PZT sensor along vertical axis and prevent it from wear
and tear when it is lift off the ground. The entire IE/IS assembly
is mounted on a sliding plate to facilitate the data collection at
multiple locations along the guide rail.

Additionally, as shown in Fig. 3, we develop an identical
robot equipped with a PaveScan GPR antenna manufactured
by Geophysical Survey System Inc. (GSSI). The GPR antenna
is installed at the bottom of robot’s chassis with 2 cm space
clearance above the ground. The sole distinction is that this
GPR robot does not show the sliding track for mounting IE/IS
assembly. Instead, it is installed with a rechargeable battery and
a high-level controller (Intel NUC) to power the device and
synchronize the pose data with GPR scan data.

B. Vision-Based Positioning

In this section, we present the vision-based positioning ap-
proach employed by the robotic system. An Intel D435i RGB-D
camera with integrated IMU is added to the robotic system, en-
abling accurate and robust pose estimations. To further increase
pose output frequency and robustness required for GPR data
collection, we utilize an Error-State Extended Kalman Filter
(ES-EKF) [21]. We fuse the SLAM pose obtained from the
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camera during the update step with the IMU’s pose during the
prediction step of ES-EKF.

State variables include position p, orientation q, velocity v,
acceleration bias ab, gyro bias ωb, and gravity vector g. To cir-
cumvent the Gimbal Lock issue, we represent orientation using
quaternions, q = [qx qy qz qw]. The state of our system is
illustrated in (1).

The Error-State Extended Kalman Filter comprises three pri-
mary states: the true state xt, the nominal state x, and the error
state δx. The true state embodies the corrected values of the
states, while the nominal state updates the state according to
the model in (3), or in a more straightforward form as shown in
(2). Here, xk can represent either the true state or the nominal
state, andw denotes the IMU’s white noise. In the nominal state,
we do not account for the noises, biases, and gravity and, thus,
consider them constant.

x =
[
p v qt ab ωb g

]
(1)

x̂k+1 = fk(xk, uk, w) (2)⎡
⎢⎢⎢⎢⎢⎢⎣

pk+1 = pk + vk ·Δt+ 1
2Δt2 · (R(am − ab) + g)

vk+1 = vk +Δt · (R(am − ab) + g)
qk+1 = qk ⊗ q{(ωm − ωb)Δt}

ab = ab
ωb = ωb

g = g

⎤
⎥⎥⎥⎥⎥⎥⎦

(3)

Upon receiving measurements from the IMU, we update the
states according to the nominal state in (3) and the covariance
according to (4). We denote our nominal state at the current step
as x̂k. Operator ⊗ represents quaternion multiplication defined
as q1 ⊗ q2 = [q1]L · q2, where [·]L represents left quaternion
product matrix.

Σ̂k+1 = F · Σk · FT +G ·Q ·GT (4)

Here, F represents the linearized state transition matrix of the
nominal state, whileG encompasses state propagation noise and
Q is the IMU covariance matrix, which includes acceleration
noise and angular velocity noise.

While the IMU update occurs during the prediction phase
of the EKF, the camera serves as the measurement update.
We utilize RGB-D ORB-SLAM3 [22] for visual SLAM pose
generation. To perform the measurement update, we first cal-
culate the Kalman Gain using (5). Once we obtain the Kalman
Gain, we need to compute the error state using (7), where Zk+1

represents the measurement from visual SLAM and xk denotes
the current nominal or true state, depending on whether we
had a measurement correction in the previous step or not. The
error-state kinematics are shown in (6), whereVi,Ai, andWi are
white Gaussian noises typically provided in the sensor datasheet,
[·]x denotes skew operator.

Kk+1 = Σ̂k+1Hk+1
T (Hk+1Σ̂k+1Hk+1

T +Rk+1)
−1 (5)

Fig. 4. IE signal collected over experimental concrete slab of CCNY Robotics
Lab. Time domain signal on the left composed of P, R, and S-wave, and its
frequency domain transfer on the right with approximate important regions. We
can clearly see highest peak around 9.7 kHz which corresponds to the thickness
frequency.

⎡
⎢⎢⎢⎢⎢⎢⎣

δpk+1= δpk + δvk ·Δt
δvk+1= δvk +Δt · (−R[am − ab]x · δθ + g) + Vi

δθk+1= RT {(ωm − ωb)Δt}δθ − δωbΔt+Θi

δab= δab +Ai

δωb= δωb +Wi

δg= δg

⎤
⎥⎥⎥⎥⎥⎥⎦

(6)

After determining the error state, we inject the observed state
into the nominal state, resulting in the true state as shown in (8).

δxk+1 = Kk+1(Zk+1 −Hk+1x̂k+1) (7)

xk+1 = x̂k+1 + δxk+1 (8)

After correcting the nominal state, we also need to update our
covariance matrix using (9).

Σk+1 = Σ̂k+1 −Kk+1Hk+1Σ̂k+1 (9)

In this case, the H matrix represents the camera’s measurement
update model.

Finally, visual SLAM provides the pose for each NDE mea-
surement. We further implement a time synchronizer software in
the on-board computer under ROS (Robot Operation System),
which takes in messages of different types from multiple sources,
and outputs them only if it has received a message on each of
those sources with the same timestamp. It is used to synchronize
the NDE measurements with vision-based positioning data.

III. CONCRETE INSPECTION AND DEFECT MAPPING

A. Impact-Echo Principle

In impact-echo testing, a mechanical impact is applied to the
surface of a concrete structure, causing the structure to vibrate.
The resulting vibration signal, which is composed of P-waves,
S-waves, and R-waves, contains valuable information about the
structure’s geometry and condition. Of these waves, the P-wave
is the most important for impact-echo analysis, while the R-wave
is particularly useful for determining the depth of vertical cracks.
The effect of the R-wave can be seen as the first and deepest dip in
the impact-echo time-domain signal as shown in Fig. 4. R effect
is faded fast, P and S-waves contribute to the rest of the signal.
The speed of a wave in a solid object is directly proportional to
the mass density of the object ρ, Young’s modulus of elasticity
E, and Poisson’s ratio v. The speed of a P-wave can be calculated
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using (10).

CP =

√
E(1− v)

ρ(1 + v)(1− 2v)
(10)

The properties of the impact will heavily affect the results of
IE. A long contact time tc with the surface will act as a low-pass
filter, and filter high frequencies. Therefore, useful information
about the structure, and/or the flaw will be lost. When manually
collecting IE data, impact is also generated manually. Usually, a
steel sphere is used. Diameter of the sphere D is directly related
with the contact time tc. On the other hand, tc defines maximum
frequency fmax that will be captured by the measurement. The
relationship between tc and D is described by Hertz theory of
elastic impact [23], and is given in (11).

Beside contact time and sphere diameter, the force F is
another parameter that defines the impact. However, the effect
of different applied impact force does not heavily affect the
normalized frequency response [12].

tc =
0.0043D

h0.1
→ tc≈0.0043D (11)

The relationship between contact time tc, and maximum fre-
quency fmax, is defined experimentally (12). However, it could
also be derived by using force-time function [12].

fmax =
1.25

tc
→ fmax =

1.25

0.0043D
(12)

IE method uses principle of wave reflection. When a wave
changes medium, or encounters discontinuities will reflect. The
reflected wave will contain information about the depth of the
discontinuity. A direct relationship between P-wave velocity
Cp, thickness frequency fthickness, and depth d of the de-
fect/structure is shown on (13). Parameter β corrects effects of
S-wave, and is usually taken as β = 0.96 for concrete. This is
also called as thickness mode of IE.

fthickness =
βCP

2 d
(13)

On the other hand, when the defects in concrete are shallow, we
need to use a short contact time tc in order to measure their depth.
However, the maximum useful frequency fmax puts a limit on
the length of this contact time, as shown in (12). As a result,
we cannot use this method to measure the depth of shallow
defects. We call this mode of analysis the flexural vibration
mode. In this mode peak frequency of IE signal is lower than the
thickness frequency of the slab. To evaluate the effectiveness of
this method, we generate maps showing the peak frequencies of
shallow defects, which are represented as lower frequencies.

B. Learning Based Impact-Echo

In this section, we present a new model for classifying
IE signals called IENet. This model outperforms existing IE
learning-based methods in terms of generalization and produces
impressive results on different datasets. Our focus is solely on
classifying IE signals as either defective or solid concrete, rather
than estimating defect depth using IE properties.

TABLE I
IENET MODEL STRUCTURE

Fig. 5. Residual block used as building block in IENet.

Structure of IENet is shown in Table I. Base building block of
this model is called residual block, shown in Fig. 5. We employ a
residual connection strategy similar to ResNet [24], which helps
the input signal to propagate faster through the network. The
model consists of six residual blocks, all of which have the same
architecture, but differ in terms of filters and kernel size. After
the signal has passed through all residual blocks it is reshaped
into a (832,1) vector. The resulting features are passed through
three bidirectional long short-term memory (Bi-LSTM) layers
until they reach the final dense layer and softmax activation.
The number of filters and kernel size for each residual block is
shown in Table I. The overall model is small, with a total of
534498 parameters. We use categorical cross-entropy for loss
function, shown in (14), where p represents the predictions and
t represents the targets. In this paper, we also implement and
evaluate several other models that demonstrate good results. In
Section IV, we explain why we ultimately choose IENet as the
winning candidate.

Li = −
∑
j

ti,j · log pi,j (14)
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Fig. 6. An illustration of the BP principle. (a) The 2D visualization of the BP
algorithm, where the left blue signal indicates an A-scan, the red-dotted lines
indicate that A-scan raw data are converted into several cones; (b) The GPR
wavefront transmission model, which is a shape of the cone.

C. GPR Inspection Analysis

GPR inspection is a wave propagation technique that transmits
a pulse of polarized high-frequency electromagnetic (EM) waves
into the subsurface media. EM wave attenuates as it travels in
media and reflects when it encounters a material change. GPR
antenna would thus record the strength and traveled time of
each reflected pulse [17]. The reflections are then amplified,
processed, and displayed on a screen as an A-scan signal,
analogous to a waveform in an oscilloscope. When the GPR
device moves along a straight line perpendicular to utility pipes,
the ensemble of the A-scans forms a B-scan, which is shown
as the hyperbolic feature, indicating the objects’ locations as
well [25], [26].

In practice, the EM wavefront transmission has a circular cone
pattern as shown in Fig. 6, where the radius is r, axis length is
h and the specific apex is at (x0, y0, z0), its axis is parallel to
the z-axis. As illustrated in Fig. 6, the brighter area indicates
the higher amplitude region in B-scan. Meanwhile, the depth
of the bright area in the BP image indicates the depth of the
A-scan pulse. By implementing the BP algorithm in A-scan data,
the back-projected model could be represented in (15), which
explicitly indicates the GPR field of view.

∀Ak
q ∈ Bk, (x− x0)

2 + (y − y0)
2 = m2 ∗ (v ∗ t)2 (15)

We denotem as the slope of the cone. If the apex angle is 2θ, then
m = tan(θ), where θ is the semi vertical angle. So the radius of
the circle r at a certain height (h = v ∗ t) from the top will be
m ∗ h. Note that x0, y0, z0 represents the location of each origin
A-scan measurement. Ak

q = {at|t = 1, . . ., nq} represents the
q-th A-scan measurement in k-th B-scan data, while scalar t
and vector at indicate the traveling time and amplitude of A-
scan signal respectively, then nq means the total samples in a
A-scan measurements. Meanwhile, we also have Bk = {Ak

q |q
= 1, . . ., nk} that represents the k-th B-scan consisting of nk

A-scans.
Implementing the BP algorithm on B-scan data results in

transforming each A-scan data into a circular cone in 3D space,
where the circular cone contains subsurface information such as
potential objects or defects. However, it is essential to preprocess
the raw GPR data to remove noise and enhance the signal in
order to obtain clear information on the subsurface defect. In
particular, we used the noise removal technique proposed in our

Fig. 7. Ground truth of concrete slab DS2. The left side shows the design of
the slab while the right side shows the real slab view before concrete pouring.

previous work [27]. Then, each A-scan data can be transformed
into a circular cone in 3D space through the BP process. Once
combining multiple circular cones in the 3D space, a 3D volume
map can be created where the intersection of the circular cones
highlights potential subsurface targets or defects.

GPR BP images usually indicate the presence of objects or
defects. However, the specific defect category cannot be directly
determined from the GPR BP images, and identification of the
defects usually relies on experts’ knowledge and the background
information of the survey site. For instance, circular or elliptical
anomalies could represent voids or sinkholes, while linear fea-
tures might indicate fractures or rebars. Complex patterns could
signify structural deformation or areas with multiple defects.

To improve the accuracy of the interpretation, comparing the
observed features in the GPR image with known subsurface fea-
tures from other sources, such as Impact Echo feature maps, can
further assist in confirming the presence of defects and rule out
false positives. More detailed experimental studies regarding the
identification of the defects via GPR and IE will be introduced
and discussed in the next Section.

IV. EXPERIMENTAL STUDY

In this work we use GPR and IE sensors to collect data
over our concrete slab. Concrete slab contains buried objects,
which emulate different defects that usually happen on concrete
structures. Defects are buried on different depths. In this section
we discuss methodology and results in detail.

A. Datasets and IE Data Preprocessing

Datasets Introduction: In this paper, we use two different
datasets, Dataset1 (DS1) and Dataset2 (DS2). Specifically, DS1
is an online public IE dataset [13] of a standard concrete slab
with eight buried rectangular objects made of various materials.
DS2 is a dataset we create ourselves, containing GPR and IE
data collected from an artificially constructed concrete slab with
defects. The defects are simulated by placing various objects,
such as T-shaped metal plates, foam, and boxes over rebars at
the bottom of the slab. The details of DS2 are depicted in Fig. 7.
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Fig. 8. Data preprocessing procedure for DS1 and DS2. Both datasets are cut,
new length is 1.72 ms. Then, all data go through low-pass filter. For DS2 that
is the end of the process. DS1 goes through upsampling block to match the
sampling rate of DS2. Both datasets are collected over concrete slabs that are
8 in deep. Thus, both signals look very similar after the processing.

DS1 contains 2016 IE data points which are annotated
from [28]. We use this dataset for training and evaluating various
learning-based IE defect mapping methods. Furthermore, each
IE signal on this dataset is collected over eight identical concrete
slabs using a sample rate of 200 kHz, and n = 2000 samples
per signal. Each slab contains four different types of defects,
installed on different depths. Additional information about this
dataset can be found in [13], [29].

We use two Omni-directional robots to collect IE and GPR
data (DS2). Each IE and GPR data point is tagged with location
information. In particular, there are 1824 impact-echo signals
collected in total and further separated into two parts. First part
has a higher resolution (31x38). For second part, we lowered
the resolution from 38 IE samples per line to 34 (19x34). In
addition, there are 47997 A-scan signals collected as GPR data
to further generate GPR defect maps.

IE Data Preprocessing: In III-A, we described some impor-
tant parameters for IE data collection. To generate the impact
we use an electrically controlled impactor, which is calibrated
to have a contact time of tc ≈ 77.4μs, and allows useful fre-
quencies up to fmax ≈ 16 kHz for thickness mode of IE. An-
other important parameter is sampling frequency. We used a
sampling frequency of 500 kHz, and n = 1024 samples per
signal.

One major problem for IE data is that many researchers
and NDE engineers use different parameters when collecting
vibration signals. In our case, DS1 and DS2 have no common
parameters in the way signals are digitized. IE signals from
DS1 are 10 ms long, while signals from DS2 are 2.048 ms long.
Both signals are sampled at different sample rates 200 kHz and
500 kHz, thus digitally they are vectors of different lengths.
To address this issue, we first employ a preprocessing strategy
that aligns the two datasets on signal duration. Specifically,
we truncate the signals in DS2 to keep only n = 860 samples
(1.72 ms) per signal, and we cut away useless parts of the signals.
In DS1, we keep n = 344 samples per signal (1.72 ms). We then
apply a low-pass filter with a cutoff frequency of 25 kHz, which
is mostly effective for DS1. Finally, we upsample DS1 to match
the sampling frequency of DS2. The flow diagram of this process
is shown in Fig. 8.

TABLE II
COMPARISON BETWEEN DIFFERENT MODELS IMPLEMENTED ON THIS PAPER

B. Training

We implemented fairly small models, hence we do not need
to use expensive equipment for training. We train models on a
server with Intel Core i7-7700 CPU @ 3.60 GHz CPU, Ge-Force
GTX 1070 GPU, and 32 GB RAM. For training and validation
we use the data collected over Slab1 to Slab7 from DS1. The
train/validation data split rate is 72%/28%. Across all our models
we used a learning rate of 0.0001, batch size of 16, and trained
for 200 epochs. We employed early stopping strategy, and we
only save models that perform best on evaluation data. To
emphasize the importance of data preprocessing, all our models
except IENet1024 are trained on preprocessed data. For training
IENet1024 we truncate IE signals from DS1, and only keep
n = 1024most significant samples for each signal. To normalize
the data we use min-max normalization.

C. Results and Evaluation

IE models comparison: In this study, we use Slab8 data from
DS1 for evaluating all models in Table II. Two baseline models:
Baseline 1DCNN, and Baseline BiLSTM are selected from a
previous study by Dorafshan et al. [13] for comparison. It is
worth noting that, as previously shown by Dorafshan et al., the
baseline models are not effective in detecting defects when the
data are collected by different IE sensor, i.e., the model fails to
generalize.

In Table II, we show quantitative performance of all models.
Defect accuracy is calculated by TP

TP+FN , where true posi-
tive TP represents number of defects when they are detected
correctly, whereas false negative FN number of defects that
are erroneously classified as solid concrete. Solid accuracy is
defined by TN

TN+FP , where true negative TN represents number
of solid concrete input that are classified correctly, whereas false
positive FP represents number of solid concrete input are er-
roneously classified as defective. Overall accuracy is calculated
by TP+TN

TP+FN+TN+FP .
Deeper 1DCNN has a bigger model depth than Baseline

1DCNN, and is the best performing model on defect classifica-
tion (84.38%). On the other hand, this model does not perform as
good as baseline on solid concrete classification (84.04%). Our
first model that performs comparable with baseline is CRNN.
This model has almost the same overall accuracy, and a slightly
lower defect accuracy than baseline. IENet1024 is the only
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Fig. 9. Impact-echo and GPR defect mapping: (a) Test results for IE models using DS1 testing data, classical IE frequency analysis, and ground truth schematics;
(b) Test results for DS2, classical IE frequency analysis, and ground truth schematics; (c) GPR results at three different depths compared to IENet and IE frequency
analysis. IE data are collected over the blue rectangle area shown in ground truth schematics for DS2, while GPR covered the read rectangle area. IENet generates
accurate maps for both datasets. GPR is able to detect all defects, including rebars, and T-shaped metal. Rebars and T-shaped metal are not detected by IE.

model trained using raw DS1 data as explained in Section IV-B.
This model performs very good on solid concrete classification
(96.08%), but not as good on defect detection (60.93%). Finally,
IENet is identified as the best model which has the highest overall
accuracy (90.48%), second best accuracy on detecting defects
(75%), and second best accuracy on detecting solid concrete
(95.74%), performing better than baseline in all categories.

To further analyze the results we generate probability maps for
DS1 data for each model, shown in Fig. 9(a). When compared on
the quality of the classification we can see that CRNN and IENet
models are highly confident when classifying IE signals. This is
a highly desirable property. On the other hand, Baseline 1DCNN
shows a good performance, but is less confident on classifying
IE signals. Finally, IE frequency map is able to reveal most of
the defects, but requires extensive data analysis to be able to
generate the map correctly.

We evaluate models on DS2, to see if they are able to gen-
eralize. For this analysis we solely rely on qualitative results,
but that are clearly visible. In Fig. 9(b), we show probability
maps generated from using DS2. Notice that baseline models
completely fail to recognize defects. Additionally, most of our
models fail too. The only model that accurately reveals all
eight defects inserted in the concrete slab is IENet. The use of
residual layers in the IENet model contributed to its improved
performance, they help the network learn more effectively by
addressing the issue of vanishing gradients.

The IENet1024 model achieved a high level of accuracy on
the DS1 test data, because testing and training data are collected
using one sensor. IENet and IENet1024 have almost identical
model architecture. However, IENet1024 has a poor perfor-
mance in DS2, classifying all concrete as defective (in red), in
contrast IENet identifies all defects correctly. This suggests that

data preprocessing plays a crucial role on generalization, along
the model architecture.

IE vs GPR Comparison: Finally, we compare defect maps
from GPR, classical IE, and learning-based IE method. For GPR
data, as described in Section III-C, we use BP-based migration
method to generate the GPR imaging result, and show the 2D
GPR imaging slices at different depth. GPR imaging shows
amplitude differences reflected by dielectric changes. Hence,
GPR is good at mapping objects or defects that have significant
dielectric property changes in concrete. Fig. 9(c) shows that
different objects/defects are recovered at certain depths. When
comparing GPR and IE results, we see that they are correlated.
However, GPR successfully reveals rebars and the T-shaped
metal sheet, while IE does not. The reason is that the metal
sheet buried in concrete does not have a big enough difference
in vibration impedance. Moreover, rebars’ radius is too small to
be detected by IE. Additionally, GPR image cannot differentiate
between objects and defects, while learning-based IE classifies
concrete conditions being defective or solid. Classical IE reveals
some of the defects, but it does not meet the bar set by learning-
based IE and GPR since the IE measurement data is difficult to
interpret without expert knowledge. The correlation of findings
from both IE and GPR sensors give the most comprehensive
evaluation of concrete structures.

V. CONCLUSION

In this study, we first introduce a robotic inspection system
carrying IE and GPR sensors to automate NDE data collection.
Instead of relying on a survey wheel encoder along pre-marked
grid lines to trigger GPR sampling, we use visual SLAM technol-
ogy to estimate the pose in real time, and tag the GPR samples
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with pose information for GPR imaging using BP algorithm.
This vision-based positioning and time-triggered approach en-
able the robot to survey the ground along arbitrary trajectory
hence significantly speed up the data collection process.

Second, we study several learning-based models to classify
the IE data and evaluate concrete conditions into being defective
or solid. We demonstrate that IENet is the best model that outper-
form others and has the highest overall classification accuracy.
It exhibits generalization ability in defecting subsurface defects
even when the model is trained on a relatively small dataset
obtained by different IE sensor at different site.

Finally, we show that BP algorithm can generate detailed 3D
GPR image of concrete structures revealing defects and objects.
GPR imaging can map dielectric changes in concrete structure,
but it requires further study to classify the defects and objects. On
the other hand, IE is able to calculate defect depths only in thick-
ness mode but does not work in shallow mode where IE cannot
determine accurate depth information. By using the proposed
learning-based model for IE data analysis and BP algorithm for
GPR imaging to generate a defect map, it enables inspectors
to quickly asses the condition of the concrete structures. The
combination of these two complementary methods is highly
valuable and represents a substantial advancement in the field
of subsurface defect recovery using GPR and IE. Experimental
results demonstrate the effectiveness of the multi-modal sens-
ing and data analysis strategy in subsurface defect mapping.
The dataset for IE and GPR tagged with location and ground
truth information will be made open source to benefit the NDE
industry.

REFERENCES

[1] H. M. La, N. Gucunski, K. Dana, and S.-H. Kee, “Development of an
autonomous bridge deck inspection robotic system,” J. Field Robot.,
vol. 34, no. 8, pp. 1489–1504, 2017.

[2] H. Li, C. Chou, L. Fan, B. Li, D. Wang, and D. Song, “Toward automatic
subsurface pipeline mapping by fusing a ground-penetrating radar and a
camera,” IEEE Trans. Automat. Sci. Eng., vol. 17, no. 2, pp. 722–734,
Apr. 2020.

[3] C. Chou, S.-H. Yeh, and D. Song, “Mirror-assisted calibration of a multi-
modal sensing array with a ground penetrating radar and a camera,” in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2017, pp. 1457–1463.

[4] N. H. Nicholas Carino and M. Sansalone, “A point source-point receiver,
pulse-echo technique for flaw detection in concrete,” ACI J. Proc., vol. 83,
pp. 199–208, 1986.

[5] E. Hoxha, J. Feng, D. Sanakov, A. Gjinofci, and J. Xiao, “Robotic in-
spection and characterization of subsurface defects on concrete structures
using impact sounding,” Struct. Health Monit.,2021, pp. 875–884, 2021.

[6] J. Feng, L. Yang, E. Hoxha, B. Jiang, and J. Xiao, “Robotic inspection of
underground utilities for construction survey using a ground penetrating
radar,” J. Comput. Civil Eng., vol. 37, no. 1, 2023, Art. no. 04022049.

[7] J. Feng, L. Yang, E. Hoxha, D. Sanakov, S. Sotnikov, and J. Xiao, “Gpr-
based model reconstruction system for underground utilities using gprnet,”
in Proc. IEEE Int. Conf. Robot. Automat., 2021, pp. 845–851.

[8] J. Krautkrämer and H. Krautkrämer, Ultrasonic Testing of Materials, 4th
ed. Berlin, Germany: Springer, 1990.

[9] L. Yang et al., “Deep neural network based visual inspection with
3D metric measurement of concrete defects using wall-climbing
robot,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2019,
pp. 2849–2854.

[10] M. Sansalone and N. J. Carino, Impact-echo: A Method for Flaw Detection
in Concrete Using Transient Stress Waves. Washington, D.C. USA: U.S.
Dept. Commerce, 1986.

[11] M. J. Sansalone and W. B. Streett, Impact-Echo: Nondestructive Eval-
uation of Concrete and Masonry. Washington, D.C. USA: U.S. Dept.
Commerce, 1997.

[12] N. Carino, “The impact-echo method: An overview,” in Proc. World
Struct. Eng. Congr., 2001. [Online]. Available: https://tsapps.nist.gov/
publication/get_pdf.cfm?pub_id=860355

[13] S. Dorafshan and H. Azari, “Deep learning models for bridge deck eval-
uation using impact echo,” Construction Building Mater., vol. 263, 2020,
Art. no. 120109.

[14] J. Xu, J. Zhang, and Z. Shen, “Recognition method of internal concrete
structure defects based on 1D-CNN,” J. Intell. Fuzzy Syst., vol. 42, no. 6,
pp. 5215–5226, 2022. [Online]. Available: https://doi.org/10.3233/JIFS-
211784

[15] F. Elghaish et al., “Developing a new deep learning CNN model to detect
and classify highway cracks,” J. Eng., Des. Technol., vol. 20, pp. 993–1014,
2022.

[16] S. Demirci, H. Cetinkaya, E. Yigit, C. Ozdemir, and A. A. Vertiy, “A
study on millimeter-wave imaging of concealed objects: Application using
back-projection algorithm,” Prog. In Electromagnetics Res., vol. 128,
pp. 457–477, 2012.

[17] S. Demirci, E. Yigit, I. H. Eskidemir, and C. Ozdemir, “Ground penetrating
radar imaging of water leaks from buried pipes based on back-projection
method,” NDT E. Int., vol. 47, pp. 35–42, 2012.

[18] X. Xie, J. Zhai, and B. Zhou, “Back-fill grouting quality evalua-
tion of the shield tunnel using ground penetrating radar with bi-
frequency back projection method,” Automat. Construction, vol. 121,
Art. no. 103435.

[19] H. Zhang, O. Shan, G. Wang, J. Li, S. Wu, and F. Zhang, “Back-projection
algorithm based on self-correlation for ground-penetrating radar imaging,”
J. Appl. Remote Sens., vol. 9, no. 1, 2015, Art. no. 095059.

[20] N. Tlale and M. de Villiers, “Kinematics and dynamics modelling of a
mecanum wheeled mobile platform,” in Proc. 15th Int. Conf. Mechatron.
Mach. Vis. Pract., 2008, pp. 657–662.

[21] J. Solá, “Quaternion kinematics for the error-state Kalman filter,” CoRR,
vol. abs/1711.02508, 2017.

[22] C. Campos, R. Elvira, J. J. G. Rodríguez, J. M. Montiel, and J. D.
Tardós, “ORB-SLAM3: An accurate open-source library for visual,
visual–inertial, and multimap SLAM,” IEEE Trans. Robot., vol. 37, no. 6,
pp. 1874–1890, Dec. 2021.

[23] W. Goldsmith and J. T. Frasier, “Impact: The theory and physical behaviour
of colliding solids.” J. Appl. Mechanics, vol. 28, no. 4, pp. 639–639,
Dec. 1961.

[24] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” 2015. [Online]. Available: http://arxiv.org/abs/1512.
03385

[25] S. Li, H. Cai, D. M. Abraham, and P. Mao, “Estimating features of
underground utilities: Hybrid GPR/GPS approach,” J. Comput. Civil Eng.,
vol. 30, no. 1, 2016, Art. no. 04014108.

[26] C. Yuan, S. Li, H. Cai, and V. R. Kamat, “GPR signature detection and
decomposition for mapping buried utilities with complex spatial configu-
ration,” J. Comput. Civil Eng., vol. 32, no. 4, 2018, Art. no. 04018026.

[27] J. Feng, L. Yang, E. Hoxha, and J. Xiao, “Improving 3D metric GPR
imaging using automated data collection and learning-based processing,”
IEEE Sensors J., vol. 23, no. 5, pp. 4527–4539, Mar. 2023.

[28] S. Dorafshan and H. Azari, “Annotated impact echo dataset (bare decks),”
Mendeley Data, vol. 1, 2020, doi: 10.17632/44rb96872r.1.

[29] D. Sattar and A. Hoda, “Evaluation of bridge decks with overlays using
impact echo, a deep learning approach,” Automat. Construction, vol. 113,
2020, Art. no. 103133.

Authorized licensed use limited to: CUNY Central ( City University of New York). Downloaded on July 08,2023 at 22:53:51 UTC from IEEE Xplore.  Restrictions apply. 

https://tsapps.nist.gov/publication/get_pdf.cfm{?}pub_id$=$860355
https://tsapps.nist.gov/publication/get_pdf.cfm{?}pub_id$=$860355
https://doi.org/10.3233/JIFS-211784
https://doi.org/10.3233/JIFS-211784
http://arxiv.org/abs/1512.penalty -@M 03385
http://arxiv.org/abs/1512.penalty -@M 03385
https://dx.doi.org/10.17632/44rb96872r.1


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


